Content
# RapidAPI MCP Server
This repository contains an implementation of an MCP Server for interfacing with the RapidAPI Global Patent API and storing patent data in a SQLite database.
## Features
- RapidAPI Global Patent API integration
- MCP Server implementation for handling patent requests
- SQLite database integration for patent data storage
- Advanced patent scoring system (pscore, cscore, lscore, tscore)
- Rate limiting and error handling
## Installation
### Using Conda (Recommended)
1. Clone the repository:
```bash
git clone https://github.com/myownipgit/RapidAPI-MCP.git
cd RapidAPI-MCP
```
2. Create and activate conda environment:
```bash
# Create environment from yml file
conda env create -f environment.yml
# Activate environment
conda activate rapidapi-mcp
```
Alternatively, you can create the environment manually:
```bash
# Create new environment with Python 3.11
conda create -n rapidapi-mcp python=3.11
# Activate environment
conda activate rapidapi-mcp
# Install required packages
conda install -c conda-forge requests aiohttp python-dotenv pytest
pip install rapidapi-connect
```
3. Set up environment variables:
```bash
cp .env.example .env
# Edit .env with your settings
```
## Usage
1. Initialize the MCP Server:
```python
from patent_mcp.server import MCPPatentServer
mcp_server = MCPPatentServer()
```
2. Handle patent search requests:
```python
search_request = {
'command': 'search',
'params': {
'query': 'quantum computing',
'date_range': '2004-2024',
'page': 1,
'per_page': 100
}
}
results = await mcp_server.handle_patent_request(search_request)
```
## Testing
To run the tests, activate your conda environment and run:
```bash
# Run the connection test
python tests/test_connection.py
# Run all tests with pytest
python -m pytest tests/
```
## Project Structure
- `patent_mcp/` - Main package directory
- `client.py` - RapidAPI client implementation
- `server.py` - MCP Server implementation
- `database.py` - SQLite database operations
- `scoring.py` - Patent scoring system
- `__init__.py` - Package initialization
- `docs/` - Documentation
- `SCORING.md` - Detailed scoring methodology
- `examples/` - Example scripts
- `tests/` - Unit tests
## Requirements
- Python 3.11 or higher
- Required packages are listed in `environment.yml`
## Scoring System
The system implements a comprehensive patent scoring methodology:
- Patent Score (pscore): Overall patent strength
- Citation Score (cscore): Citation impact analysis
- Legal Score (lscore): Legal status evaluation
- Technology Score (tscore): Technical complexity assessment
See [SCORING.md](docs/SCORING.md) for detailed information.
## Configuration
The server uses the following environment variables:
- `RAPIDAPI_KEY`: Your RapidAPI API key
- `DB_PATH`: Path to SQLite database (optional, defaults to `./patents.db`)
- Additional configuration options in `.env`
## Rate Limits
The RapidAPI service has the following limits:
- 1000 requests per day
- 500000 hard limit
## Contributing
Contributions are welcome! Please feel free to submit a Pull Request.
## License
MIT License - see LICENSE file for details
You Might Also Like
MarkItDown MCP
markitdown-mcp is a lightweight MCP server for converting URIs to Markdown.
Github MCP
GitHub MCP Server enables automation and data analysis with GitHub APIs.

apisix
Apache APISIX is an open-source API gateway for managing APIs and microservices.
opik
Opik is a tool for managing and visualizing machine learning experiments.

sqlglot
SQLGlot is a no-dependency SQL parser and transpiler supporting 30 dialects.
MCP GO
MCP-Go is a Go implementation of the Model Context Protocol for LLM integration.