Content
# JVM MCP Server
<p align="center">
<img src="https://img.shields.io/badge/Python-3.6+-blue.svg" alt="Python Version">
<img src="https://img.shields.io/badge/JDK-8+-green.svg" alt="JDK Version">
<img src="https://img.shields.io/badge/License-MIT-yellow.svg" alt="License">
</p>
[English](README.md) | [中文](README_zh.md)
[](https://mseep.ai/app/xzq-xu-jvm-mcp-server)
A lightweight JVM monitoring and diagnostic MCP (Multi-Agent Communication Protocol) server implementation based on native JDK tools. Provides AI agents with powerful capabilities to monitor and analyze Java applications without requiring third-party tools like Arthas.
## Features
- **Zero Dependencies**: Uses only native JDK tools (jps, jstack, jmap, etc.)
- **Lightweight**: Minimal resource consumption compared to agent-based solutions
- **High Compatibility**: Works with all Java versions and platforms
- **Non-Intrusive**: No modifications to target applications required
- **Secure**: Uses only JDK certified tools and commands
- **Remote Monitoring**: Support for both local and remote JVM monitoring via SSH
## Core Capabilities
### Basic Monitoring
- Java process listing and identification
- JVM basic information retrieval
- Memory usage monitoring
- Thread information and stack trace analysis
- Class loading statistics
- Detailed class structure information
### Advanced Features
- Method call path analysis
- Class decompilation
- Method search and inspection
- Method invocation monitoring
- Logger level management
- System resource dashboard
## System Requirements
- Python 3.6+
- JDK 8+
- Linux/Unix/Windows OS
- SSH access (for remote monitoring)
## Installation
### Using uv (Recommended)
```bash
# Install uv if not already installed
curl -LsSf https://astral.sh/uv/install.sh | sh # Linux/macOS
# or
powershell -ExecutionPolicy ByPass -c "irm https://astral.sh/uv/install.ps1 | iex" # Windows
# Install the package
uv pip install jvm-mcp-server
```
### Using pip
```bash
pip install jvm-mcp-server
```
### From Source
```bash
# Clone the repository
git clone https://github.com/your-repo/jvm-mcp-server.git
cd jvm-mcp-server
# Using uv (recommended)
uv venv # Create virtual environment
uv sync # Install dependencies
# Or install in development mode
uv pip install -e .
```
## Quick Start
### Starting the Server
#### Using uv (Recommended)
```bash
# Local mode
uv run jvm-mcp-server
# Using environment variables file for remote mode
uv run --env-file .env jvm-mcp-server
# In specific directory
uv --directory /path/to/project run --env-file .env jvm-mcp-server
```
#### Using uvx
```bash
# Local mode
uvx run jvm-mcp-server
# With environment variables
uvx run --env-file .env jvm-mcp-server
```
#### Using Python directly
```python
from jvm_mcp_server import JvmMcpServer
# Local mode
server = JvmMcpServer()
server.run()
# Remote mode (via environment variables)
# Set SSH_HOST, SSH_PORT, SSH_USER, SSH_PASSWORD or SSH_KEY
import os
os.environ['SSH_HOST'] = 'user@remote-host'
os.environ['SSH_PORT'] = '22'
server = JvmMcpServer()
server.run()
```
### Using with MCP Configuration
```json
{
"mcpServers": {
"jvm-mcp-server": {
"command": "uv",
"args": [
"--directory",
"/path/to/jvm-mcp-server",
"run",
"--env-file",
"/path/to/jvm-mcp-server/.env",
"jvm-mcp-server"
]
}
}
}
```
## Available Tools
JVM-MCP-Server provides a comprehensive set of tools for JVM monitoring and diagnostics:
- `list_java_processes`: List all Java processes
- `get_thread_info`: Get thread information for a specific process
- `get_jvm_info`: Get JVM basic information
- `get_memory_info`: Get memory usage information
- `get_stack_trace`: Get thread stack trace information
- `get_class_info`: Get detailed class information including structure
- `get_stack_trace_by_method`: Get method call path
- `decompile_class`: Decompile class source code
- `search_method`: Search for methods in classes
- `watch_method`: Monitor method invocations
- `get_logger_info`: Get logger information
- `set_logger_level`: Set logger levels
- `get_dashboard`: Get system resource dashboard
- `get_jcmd_output`: Execute JDK jcmd commands
- `get_jstat_output`: Execute JDK jstat commands
For detailed documentation on each tool, see [Available Tools](./doc/available_tools.md).
## Architecture
JVM-MCP-Server is built on a modular architecture:
1. **Command Layer**: Wraps JDK native commands
2. **Executor Layer**: Handles local and remote command execution
3. **Formatter Layer**: Processes and formats command output
4. **MCP Interface**: Exposes functionality through FastMCP protocol
### Key Components
- `BaseCommand`: Abstract base class for all commands
- `CommandExecutor`: Interface for command execution (local and remote)
- `OutputFormatter`: Interface for formatting command output
- `JvmMcpServer`: Main server class that registers all tools
## Development Status
The project is in active development. See [Native_TODO.md](Native_TODO.md) for current progress.
### Completed
- Core architecture and command framework
- Basic commands implementation (jps, jstack, jmap, jinfo, jcmd, jstat)
- Class information retrieval system
- MCP tool parameter type compatibility fixes
### In Progress
- Caching mechanism
- Method tracing
- Performance monitoring
- Error handling improvements
## Contributing
Contributions are welcome! Please feel free to submit a Pull Request.
1. Fork the repository
2. Create your feature branch (`git checkout -b feature/amazing-feature`)
3. Commit your changes (`git commit -m 'Add some amazing feature'`)
4. Push to the branch (`git push origin feature/amazing-feature`)
5. Open a Pull Request
## License
This project is licensed under the MIT License - see the [LICENSE](LICENSE) file for details.
## Acknowledgements
- JDK tools documentation
- FastMCP protocol specification
- Contributors and testers
Connection Info
You Might Also Like
MarkItDown MCP
MarkItDown-MCP is a lightweight server for converting various URIs to Markdown.
Context 7
Context7 MCP provides up-to-date code documentation for any prompt.

Continue
Continue is an open-source project for enhancing MCP Server functionality.
mcp-server
MCP Server enables building AI agents with a model-driven approach in minimal code.
mongo-mcp
MongoDB MCP Server for LLMs enables natural language interaction with databases.
auto-mcp
Auto MCP transforms OpenAPI/Swagger definitions into fully-featured MCP servers.