Content
# OpenRouter MCP Server
[](https://github.com/heltonteixeira/openrouterai)
[](CHANGELOG.md)
[](https://www.typescriptlang.org/)
[](LICENSE)
A Model Context Protocol (MCP) server providing seamless integration with OpenRouter.ai's diverse model ecosystem. Access various AI models through a unified, type-safe interface with built-in caching, rate limiting, and error handling.
<a href="https://glama.ai/mcp/servers/xdnmf8yei0"><img width="380" height="200" src="https://glama.ai/mcp/servers/xdnmf8yei0/badge" alt="OpenRouter Server MCP server" /></a>
## Features
- **Model Access**
- Direct access to all OpenRouter.ai models
- Automatic model validation and capability checking
- Default model configuration support
- **Performance Optimization**
- Smart model information caching (1-hour expiry)
- Automatic rate limit management
- Exponential backoff for failed requests
- **Unified Response Format**
- Consistent `ToolResult` structure for all responses
- Clear error identification with `isError` flag
- Structured error messages with context
## Installation
```bash
pnpm install @mcpservers/openrouterai
```
## Configuration
### Prerequisites
1. Get your OpenRouter API key from [OpenRouter Keys](https://openrouter.ai/keys)
2. Choose a default model (optional)
### Environment Variables
* `OPENROUTER_API_KEY`: **Required**. Your OpenRouter API key.
* `OPENROUTER_DEFAULT_MODEL`: Optional. The default model to use if not specified in the request (e.g., `openrouter/auto`).
* `OPENROUTER_MAX_TOKENS`: Optional. Default maximum number of tokens to generate if `max_tokens` is not provided in the request.
* `OPENROUTER_PROVIDER_QUANTIZATIONS`: Optional. Comma-separated list of default quantization levels to filter by (e.g., `fp16,int8`) if `provider.quantizations` is not provided in the request. (Phase 1)
* `OPENROUTER_PROVIDER_IGNORE`: Optional. Comma-separated list of default provider names to ignore (e.g., `mistralai,openai`) if `provider.ignore` is not provided in the request. (Phase 1)
* `OPENROUTER_PROVIDER_SORT`: Optional. Default sort order for providers ("price", "throughput", or "latency"). Overridden by `provider.sort` argument. (Phase 2)
* `OPENROUTER_PROVIDER_ORDER`: Optional. Default prioritized list of provider IDs (JSON array string, e.g., `'["openai/gpt-4o", "anthropic/claude-3-opus"]'`). Overridden by `provider.order` argument. (Phase 2)
* `OPENROUTER_PROVIDER_REQUIRE_PARAMETERS`: Optional. Default boolean (`true` or `false`) to only use providers supporting all specified request parameters. Overridden by `provider.require_parameters` argument. (Phase 2)
* `OPENROUTER_PROVIDER_DATA_COLLECTION`: Optional. Default data collection policy ("allow" or "deny"). Overridden by `provider.data_collection` argument. (Phase 2)
* `OPENROUTER_PROVIDER_ALLOW_FALLBACKS`: Optional. Default boolean (`true` or `false`) to control fallback behavior if preferred providers fail. Overridden by `provider.allow_fallbacks` argument. (Phase 2)
```env
# Example .env file content
OPENROUTER_API_KEY=your-api-key-here
OPENROUTER_DEFAULT_MODEL=openrouter/auto
OPENROUTER_MAX_TOKENS=1024
OPENROUTER_PROVIDER_QUANTIZATIONS=fp16,int8
OPENROUTER_PROVIDER_IGNORE=openai,anthropic
OPENROUTER_PROVIDER_SORT=price
OPENROUTER_PROVIDER_ORDER='["openai/gpt-4o", "anthropic/claude-3-opus"]'
OPENROUTER_PROVIDER_REQUIRE_PARAMETERS=true
OPENROUTER_PROVIDER_DATA_COLLECTION=deny
OPENROUTER_PROVIDER_ALLOW_FALLBACKS=false
```
OPENROUTER_PROVIDER_QUANTIZATIONS=fp16,int8
OPENROUTER_PROVIDER_IGNORE=openai,anthropic
```
### Setup
Add to your MCP settings configuration file (`cline_mcp_settings.json` or `claude_desktop_config.json`):
```json
{
"mcpServers": {
"openrouterai": {
"command": "npx",
"args": ["@mcpservers/openrouterai"],
"env": {
"OPENROUTER_API_KEY": "your-api-key-here",
"OPENROUTER_DEFAULT_MODEL": "optional-default-model",
"OPENROUTER_MAX_TOKENS": "1024",
"OPENROUTER_PROVIDER_QUANTIZATIONS": "fp16,int8",
"OPENROUTER_PROVIDER_IGNORE": "openai,anthropic"
}
}
}
}
## Response Format
All tools return responses in a standardized structure:
```typescript
interface ToolResult {
isError: boolean;
content: Array<{
type: "text";
text: string; // JSON string or error message
}>;
}
```
**Success Example:**
```json
{
"isError": false,
"content": [{
"type": "text",
"text": "{\"id\": \"gen-123\", ...}"
}]
}
```
**Error Example:**
```json
{
"isError": true,
"content": [{
"type": "text",
"text": "Error: Model validation failed - 'invalid-model' not found"
}]
}
```
## Available Tools
### `chat_completion`
Sends a request to the OpenRouter Chat Completions API.
**Input Schema:**
* `model` (string, optional): The model to use (e.g., `openai/gpt-4o`, `google/gemini-pro`). Overrides `OPENROUTER_DEFAULT_MODEL`. Defaults to `openrouter/auto` if neither is set.
* **Model Suffixes:** You can append `:nitro` to a model ID (e.g., `openai/gpt-4o:nitro`) to potentially route to faster, experimental versions if available. Append `:floor` (e.g., `mistralai/mistral-7b-instruct:floor`) to use the cheapest available variant of a model, often useful for testing or low-cost tasks. Note: Availability of `:nitro` and `:floor` variants depends on OpenRouter.
* `messages` (array, required): An array of message objects conforming to the OpenAI chat completion format.
* `temperature` (number, optional): Sampling temperature. Defaults to 1.
* `max_tokens` (number, optional): Maximum number of tokens to generate in the completion. Overrides `OPENROUTER_MAX_TOKENS`.
* `provider` (object, optional): Provider routing configuration. Overrides corresponding `OPENROUTER_PROVIDER_*` environment variables.
* `quantizations` (array of strings, optional): List of quantization levels to filter by (e.g., `["fp16", "int8"]`). Only models matching one of these levels will be considered. Overrides `OPENROUTER_PROVIDER_QUANTIZATIONS`. (Phase 1)
* `ignore` (array of strings, optional): List of provider names to exclude (e.g., `["openai", "anthropic"]`). Models from these providers will not be used. Overrides `OPENROUTER_PROVIDER_IGNORE`. (Phase 1)
* `sort` ("price" | "throughput" | "latency", optional): Sort providers by the specified criteria. Overrides `OPENROUTER_PROVIDER_SORT`. (Phase 2)
* `order` (array of strings, optional): A prioritized list of provider IDs (e.g., `["openai/gpt-4o", "anthropic/claude-3-opus"]`). Overrides `OPENROUTER_PROVIDER_ORDER`. (Phase 2)
* `require_parameters` (boolean, optional): If true, only use providers that support all specified request parameters (like tools, functions, temperature). Overrides `OPENROUTER_PROVIDER_REQUIRE_PARAMETERS`. (Phase 2)
* `data_collection` ("allow" | "deny", optional): Specify whether providers are allowed to collect data from the request. Overrides `OPENROUTER_PROVIDER_DATA_COLLECTION`. (Phase 2)
* `allow_fallbacks` (boolean, optional): If true (default), allows falling back to other providers if the preferred ones fail or are unavailable. If false, fails the request if preferred providers cannot be used. Overrides `OPENROUTER_PROVIDER_ALLOW_FALLBACKS`. (Phase 2)
**Example Usage:**
```json
{
"tool": "chat_completion",
"arguments": {
"model": "anthropic/claude-3-haiku",
"messages": [
{ "role": "user", "content": "Explain the concept of quantization in AI models." }
],
"max_tokens": 500,
"provider": {
"quantizations": ["fp16"],
"ignore": ["openai"],
"sort": "price",
"order": ["anthropic/claude-3-haiku", "google/gemini-pro"],
"require_parameters": true,
"allow_fallbacks": false
}
}
}
```
This example requests a completion from `anthropic/claude-3-haiku`, limits the response to 500 tokens. It specifies provider routing options: prefer `fp16` quantized models, ignore `openai` providers, sort remaining providers by `price`, prioritize `anthropic/claude-3-haiku` then `google/gemini-pro`, require the chosen provider to support all request parameters (like `max_tokens`), and disable fallbacks (fail if the prioritized providers cannot fulfill the request).
### search_models
Search and filter available models:
```typescript
interface ModelSearchRequest {
query?: string;
provider?: string;
minContextLength?: number;
capabilities?: {
functions?: boolean;
vision?: boolean;
};
}
// Response: ToolResult with model list or error
```
### get_model_info
Get detailed information about a specific model:
```typescript
{
model: string; // Model identifier
}
```
### validate_model
Check if a model ID is valid:
```typescript
interface ModelValidationRequest {
model: string;
}
// Response:
// Success: { isError: false, valid: true }
// Error: { isError: true, error: "Model not found" }
```
## Error Handling
The server provides structured errors with contextual information:
```typescript
// Error response structure
{
isError: true,
content: [{
type: "text",
text: "Error: [Category] - Detailed message"
}]
}
```
**Common Error Categories:**
- `Validation Error`: Invalid input parameters
- `API Error`: OpenRouter API communication issues
- `Rate Limit`: Request throttling detection
- `Internal Error`: Server-side processing failures
**Handling Responses:**
```typescript
async function handleResponse(result: ToolResult) {
if (result.isError) {
const errorMessage = result.content[0].text;
if (errorMessage.startsWith('Error: Rate Limit')) {
// Handle rate limiting
}
// Other error handling
} else {
const data = JSON.parse(result.content[0].text);
// Process successful response
}
}
```
## Development
See [CONTRIBUTING.md](CONTRIBUTING.md) for detailed information about:
- Development setup
- Project structure
- Feature implementation
- Error handling guidelines
- Tool usage examples
```bash
# Install dependencies
pnpm install
# Build project
pnpm run build
# Run tests
pnpm test
```
## Changelog
See [CHANGELOG.md](./CHANGELOG.md) for recent updates including:
- Unified response format implementation
- Enhanced error handling system
- Type-safe interface improvements
## License
This project is licensed under the Apache License 2.0 - see the [LICENSE](LICENSE) file for details.
Connection Info
You Might Also Like
MarkItDown MCP
Converting files and office documents to Markdown.
Time
Obtaining current time information and converting time between different...
Filesystem
Model Context Protocol Servers
mcp-logseq
MCP server for LogSeq enables AI interaction with your knowledge base.
dataHill
Lightweight IPython Data Analysis MCP Server with session management and...
atlassian-mcp-server
Remote MCP Server that securely connects Jira and Confluence with your LLM,...