Content
<div align="center">
<!-- Main Title Link -->
<b>mcp-google-sheets</b>
<!-- Description Paragraph -->
<p align="center">
<i>Your AI Assistant's Gateway to Google Sheets! </i>📊
</p>
[](https://pypi.org/project/mcp-google-sheets/)
[](https://pepy.tech/projects/mcp-google-sheets)


</div>
---
## 🤔 What is this?
`mcp-google-sheets` is a Python-based MCP server that acts as a bridge between any MCP-compatible client (like Claude Desktop) and the Google Sheets API. It allows you to interact with your Google Spreadsheets using a defined set of tools, enabling powerful automation and data manipulation workflows driven by AI.
## 🚀 Quick Start (Using `uvx`)
Essentially the server runs in one line: `uvx mcp-google-sheets@latest`.
This cmd will automatically download the latest code and run it. **We recommend always using `@latest`** to ensure you have the newest version with the latest features and bug fixes.
1. **☁️ Prerequisite: Google Cloud Setup**
* You **must** configure Google Cloud Platform credentials and enable the necessary APIs first. We strongly recommend using a **Service Account**.
* ➡️ Jump to the [**Detailed Google Cloud Platform Setup**](#-google-cloud-platform-setup-detailed) guide below.
2. **🐍 Install `uv`**
* `uvx` is part of `uv`, a fast Python package installer and resolver. Install it if you haven't already:
```bash
# macOS / Linux
curl -LsSf https://astral.sh/uv/install.sh | sh
# Windows
powershell -c "irm https://astral.sh/uv/install.ps1 | iex"
# Or using pip:
# pip install uv
```
*Follow instructions in the installer output to add `uv` to your PATH if needed.*
3. **🔑 Set Essential Environment Variables (Service Account Recommended)**
* You need to tell the server how to authenticate. Set these variables in your terminal:
* **(Linux/macOS)**
```bash
# Replace with YOUR actual path and folder ID from the Google Setup step
export SERVICE_ACCOUNT_PATH="/path/to/your/service-account-key.json"
export DRIVE_FOLDER_ID="YOUR_DRIVE_FOLDER_ID"
```
* **(Windows CMD)**
```cmd
set SERVICE_ACCOUNT_PATH="C:\path\to\your\service-account-key.json"
set DRIVE_FOLDER_ID="YOUR_DRIVE_FOLDER_ID"
```
* **(Windows PowerShell)**
```powershell
$env:SERVICE_ACCOUNT_PATH = "C:\path\to\your\service-account-key.json"
$env:DRIVE_FOLDER_ID = "YOUR_DRIVE_FOLDER_ID"
```
* ➡️ See [**Detailed Authentication & Environment Variables**](#-authentication--environment-variables-detailed) for other options (OAuth, `CREDENTIALS_CONFIG`).
4. **🏃 Run the Server!**
* `uvx` will automatically download and run the latest version of `mcp-google-sheets`:
```bash
uvx mcp-google-sheets@latest
```
* The server will start and print logs indicating it's ready.
*
* > **💡 Pro Tip:** Always use `@latest` to ensure you get the newest version with bug fixes and features. Without `@latest`, `uvx` may use a cached older version.
5. **🔌 Connect your MCP Client**
* Configure your client (e.g., Claude Desktop) to connect to the running server.
* Depending on the client you use, you might not need step 4 because the client can launch the server for you. But it's a good practice to test run step 4 anyway to make sure things are set up properly.
* ➡️ See [**Usage with Claude Desktop**](#-usage-with-claude-desktop) for examples.
You're ready! Start issuing commands via your MCP client.
---
## ✨ Key Features
* **Seamless Integration:** Connects directly to Google Drive & Google Sheets APIs.
* **Comprehensive Tools:** Offers a wide range of operations (CRUD, listing, batching, sharing, formatting, etc.).
* **Flexible Authentication:** Supports **Service Accounts (recommended)**, OAuth 2.0, and direct credential injection via environment variables.
* **Easy Deployment:** Run instantly with `uvx` (zero-install feel) or clone for development using `uv`.
* **AI-Ready:** Designed for use with MCP-compatible clients, enabling natural language spreadsheet interaction.
---
## 🛠️ Available Tools & Resources
This server exposes the following tools for interacting with Google Sheets:
*(Input parameters are typically strings unless otherwise specified)*
* **`list_spreadsheets`**: Lists spreadsheets in the configured Drive folder (Service Account) or accessible by the user (OAuth).
* _Returns:_ List of objects `[{id: string, title: string}]`
* **`create_spreadsheet`**: Creates a new spreadsheet.
* `title` (string): The desired title.
* _Returns:_ Object with spreadsheet info, including `spreadsheetId`.
* **`get_sheet_data`**: Reads data from a range in a sheet.
* `spreadsheet_id` (string)
* `sheet` (string): Name of the sheet.
* `range` (optional string): A1 notation (e.g., `'A1:C10'`, `'Sheet1!B2:D'`). If omitted, reads the whole sheet.
* `include_grid_data` (optional boolean, default False): If True, includes cell formatting and other metadata (larger response). If False, returns values only (more efficient).
* _Returns:_ If `include_grid_data=True`, full grid data with metadata. If `False`, a values result object from the Values API.
* **`get_sheet_formulas`**: Reads formulas from a range in a sheet.
* `spreadsheet_id` (string)
* `sheet` (string): Name of the sheet.
* `range` (optional string): A1 notation (e.g., `'A1:C10'`, `'Sheet1!B2:D'`). If omitted, reads the whole sheet.
* _Returns:_ 2D array of cell formulas.
* **`update_cells`**: Writes data to a specific range. Overwrites existing data.
* `spreadsheet_id` (string)
* `sheet` (string)
* `range` (string): A1 notation.
* `data` (2D array): Values to write.
* _Returns:_ Update result object.
* **`batch_update_cells`**: Updates multiple ranges in one API call.
* `spreadsheet_id` (string)
* `sheet` (string)
* `ranges` (object): Dictionary mapping range strings (A1 notation) to 2D arrays of values `{ "A1:B2": [[1, 2], [3, 4]], "D5": [["Hello"]] }`.
* _Returns:_ Batch update result object.
* **`add_rows`**: Appends rows to the end of a sheet (after the last row with data).
* `spreadsheet_id` (string)
* `sheet` (string)
* `data` (2D array): Rows to append.
* _Returns:_ Update result object.
* **`list_sheets`**: Lists all sheet names within a spreadsheet.
* `spreadsheet_id` (string)
* _Returns:_ List of sheet name strings `["Sheet1", "Sheet2"]`.
* **`create_sheet`**: Adds a new sheet (tab) to a spreadsheet.
* `spreadsheet_id` (string)
* `title` (string): Name for the new sheet.
* _Returns:_ New sheet properties object.
* **`get_multiple_sheet_data`**: Fetches data from multiple ranges across potentially different spreadsheets in one call.
* `queries` (array of objects): Each object needs `spreadsheet_id`, `sheet`, and `range`. `[{spreadsheet_id: 'abc', sheet: 'Sheet1', range: 'A1:B2'}, ...]`.
* _Returns:_ List of objects, each containing the query params and fetched `data` or an `error`.
* **`get_multiple_spreadsheet_summary`**: Gets titles, sheet names, headers, and first few rows for multiple spreadsheets.
* `spreadsheet_ids` (array of strings)
* `rows_to_fetch` (optional integer, default 5): How many rows (including header) to preview.
* _Returns:_ List of summary objects for each spreadsheet.
* **`share_spreadsheet`**: Shares a spreadsheet with specified users/emails and roles.
* `spreadsheet_id` (string)
* `recipients` (array of objects): `[{email_address: 'user@example.com', role: 'writer'}, ...]`. Roles: `reader`, `commenter`, `writer`.
* `send_notification` (optional boolean, default True): Send email notifications.
* _Returns:_ Dictionary with `successes` and `failures` lists.
* **`add_columns`**: Adds columns to a sheet. *(Verify parameters if implemented)*
* **`copy_sheet`**: Duplicates a sheet within a spreadsheet. *(Verify parameters if implemented)*
* **`rename_sheet`**: Renames an existing sheet. *(Verify parameters if implemented)*
**MCP Resources:**
* **`spreadsheet://{spreadsheet_id}/info`**: Get basic metadata about a Google Spreadsheet.
* _Returns:_ JSON string with spreadsheet information.
---
## ☁️ Google Cloud Platform Setup (Detailed)
This setup is **required** before running the server.
1. **Create/Select a GCP Project:** Go to the [Google Cloud Console](https://console.cloud.google.com/).
2. **Enable APIs:** Navigate to "APIs & Services" -> "Library". Search for and enable:
* `Google Sheets API`
* `Google Drive API`
3. **Configure Credentials:** You need to choose *one* authentication method below (Service Account is recommended).
---
## 🔑 Authentication & Environment Variables (Detailed)
The server needs credentials to access Google APIs. Choose one method:
### Method A: Service Account (Recommended for Servers/Automation) ✅
* **Why?** Headless (no browser needed), secure, ideal for server environments. Doesn't expire easily.
* **Steps:**
1. **Create Service Account:** In GCP Console -> "IAM & Admin" -> "Service Accounts".
* Click "+ CREATE SERVICE ACCOUNT". Name it (e.g., `mcp-sheets-service`).
* Grant Roles: Add `Editor` role for broad access, or more granular roles (like `roles/drive.file` and specific Sheets roles) for stricter permissions.
* Click "Done". Find the account, click Actions (⋮) -> "Manage keys".
* Click "ADD KEY" -> "Create new key" -> **JSON** -> "CREATE".
* **Download and securely store** the JSON key file.
2. **Create & Share Google Drive Folder:**
* In [Google Drive](https://drive.google.com/), create a folder (e.g., "AI Managed Sheets").
* Note the **Folder ID** from the URL: `https://drive.google.com/drive/folders/THIS_IS_THE_FOLDER_ID`.
* Right-click the folder -> "Share" -> "Share".
* Enter the Service Account's email (from the JSON file `client_email`).
* Grant **Editor** access. Uncheck "Notify people". Click "Share".
3. **Set Environment Variables:**
* `SERVICE_ACCOUNT_PATH`: Full path to the downloaded JSON key file.
* `DRIVE_FOLDER_ID`: The ID of the shared Google Drive folder.
*(See [Ultra Quick Start](#-ultra-quick-start-using-uvx) for OS-specific examples)*
### Method B: OAuth 2.0 (Interactive / Personal Use) 🧑💻
* **Why?** For personal use or local development where interactive browser login is okay.
* **Steps:**
1. **Configure OAuth Consent Screen:** In GCP Console -> "APIs & Services" -> "OAuth consent screen". Select "External", fill required info, add scopes (`.../auth/spreadsheets`, `.../auth/drive`), add test users if needed.
2. **Create OAuth Client ID:** In GCP Console -> "APIs & Services" -> "Credentials". "+ CREATE CREDENTIALS" -> "OAuth client ID" -> Type: **Desktop app**. Name it. "CREATE". **Download JSON**.
3. **Set Environment Variables:**
* `CREDENTIALS_PATH`: Path to the downloaded OAuth credentials JSON file (default: `credentials.json`).
* `TOKEN_PATH`: Path to store the user's refresh token after first login (default: `token.json`). Must be writable.
### Method C: Direct Credential Injection (Advanced) 🔒
* **Why?** Useful in environments like Docker, Kubernetes, or CI/CD where managing files is hard, but environment variables are easy/secure. Avoids file system access.
* **How?** Instead of providing a *path* to the credentials file, you provide the *content* of the file, encoded in Base64, directly in an environment variable.
* **Steps:**
1. **Get your credentials JSON file** (either Service Account key or OAuth Client ID file). Let's call it `your_credentials.json`.
2. **Generate the Base64 string:**
* **(Linux/macOS):** `base64 -w 0 your_credentials.json`
* **(Windows PowerShell):**
```powershell
$filePath = "C:\path\to\your_credentials.json"; # Use actual path
$bytes = [System.IO.File]::ReadAllBytes($filePath);
$base64 = [System.Convert]::ToBase64String($bytes);
$base64 # Copy this output
```
* **(Caution):** Avoid pasting sensitive credentials into untrusted online encoders.
3. **Set the Environment Variable:**
* `CREDENTIALS_CONFIG`: Set this variable to the **full Base64 string** you just generated.
```bash
# Example (Linux/macOS) - Use the actual string generated
export CREDENTIALS_CONFIG="ewogICJ0eXBlIjogInNlcnZpY2VfYWNjb..."
```
### Method D: Application Default Credentials (ADC) 🌐
* **Why?** Ideal for Google Cloud environments (GKE, Compute Engine, Cloud Run) and local development with `gcloud auth application-default login`. No explicit credential files needed.
* **How?** Uses Google's Application Default Credentials chain to automatically discover credentials from multiple sources.
* **ADC Search Order:**
1. `GOOGLE_APPLICATION_CREDENTIALS` environment variable (path to service account key) - **Google's standard variable**
2. `gcloud auth application-default login` credentials (local development)
3. Attached service account from metadata server (GKE, Compute Engine, etc.)
* **Setup:**
* **Local Development:**
1. Run `gcloud auth application-default login --scopes=https://www.googleapis.com/auth/cloud-platform,https://www.googleapis.com/auth/spreadsheets,https://www.googleapis.com/auth/drive` once
2. Set a quota project: `gcloud auth application-default set-quota-project <project_id>` (replace `<project_id>` with your Google Cloud project ID)
* **Google Cloud:** Attach a service account to your compute resource
* **Environment Variable:** Set `GOOGLE_APPLICATION_CREDENTIALS=/path/to/service-account.json` (Google's standard)
* **No additional environment variables needed** - ADC is used automatically as a fallback when other methods fail.
**Note:** `GOOGLE_APPLICATION_CREDENTIALS` is Google's official standard environment variable, while `SERVICE_ACCOUNT_PATH` is specific to this MCP server. If you set `GOOGLE_APPLICATION_CREDENTIALS`, ADC will find it automatically.
### Authentication Priority & Summary
The server checks for credentials in this order:
1. `CREDENTIALS_CONFIG` (Base64 content)
2. `SERVICE_ACCOUNT_PATH` (Path to Service Account JSON)
3. `CREDENTIALS_PATH` (Path to OAuth JSON) - triggers interactive flow if token is missing/expired
4. **Application Default Credentials (ADC)** - automatic fallback
**Environment Variable Summary:**
| Variable | Method(s) | Description | Default |
| :--------------------- | :-------------------------- | :-------------------------------------------------------------- | :--------------- |
| `SERVICE_ACCOUNT_PATH` | Service Account | Path to the Service Account JSON key file (MCP server specific). | - |
| `GOOGLE_APPLICATION_CREDENTIALS` | ADC | Path to service account key (Google's standard variable). | - |
| `DRIVE_FOLDER_ID` | Service Account | ID of the Google Drive folder shared with the Service Account. | - |
| `CREDENTIALS_PATH` | OAuth 2.0 | Path to the OAuth 2.0 Client ID JSON file. | `credentials.json` |
| `TOKEN_PATH` | OAuth 2.0 | Path to store the generated OAuth token. | `token.json` |
| `CREDENTIALS_CONFIG` | Service Account / OAuth 2.0 | Base64 encoded JSON string of credentials content. | - |
---
## ⚙️ Running the Server (Detailed)
### Method 1: Using `uvx` (Recommended for Users)
As shown in the [Ultra Quick Start](#-ultra-quick-start-using-uvx), this is the easiest way. Set environment variables, then run:
```bash
uvx mcp-google-sheets@latest
```
`uvx` handles fetching and running the package temporarily.
### Method 2: For Development (Cloning the Repo)
If you want to modify the code:
1. **Clone:** `git clone https://github.com/yourusername/mcp-google-sheets.git && cd mcp-google-sheets` (Use actual URL)
2. **Set Environment Variables:** As described above.
3. **Run using `uv`:** (Uses the local code)
```bash
uv run mcp-google-sheets
# Or via the script name if defined in pyproject.toml, e.g.:
# uv run start
```
---
## 🔌 Usage with Claude Desktop
Add the server config to `claude_desktop_config.json` under `mcpServers`. Choose the block matching your setup:
**⚠️ Important Notes:**
- **🍎 macOS Users:** use the full path: `"/Users/yourusername/.local/bin/uvx"` instead of just `"uvx"`
<details>
<summary>🔵 Config: uvx + Service Account (Recommended)</summary>
```json
{
"mcpServers": {
"google-sheets": {
"command": "uvx",
"args": ["mcp-google-sheets@latest"],
"env": {
"SERVICE_ACCOUNT_PATH": "/full/path/to/your/service-account-key.json",
"DRIVE_FOLDER_ID": "your_shared_folder_id_here"
}
}
}
}
```
**🍎 macOS Note:** If you get a `spawn uvx ENOENT` error, use the full path to `uvx`:
```json
{
"mcpServers": {
"google-sheets": {
"command": "/Users/yourusername/.local/bin/uvx",
"args": ["mcp-google-sheets@latest"],
"env": {
"SERVICE_ACCOUNT_PATH": "/full/path/to/your/service-account-key.json",
"DRIVE_FOLDER_ID": "your_shared_folder_id_here"
}
}
}
}
```
*Replace `yourusername` with your actual username.*
</details>
<details>
<summary>🔵 Config: uvx + OAuth 2.0</summary>
```json
{
"mcpServers": {
"google-sheets": {
"command": "uvx",
"args": ["mcp-google-sheets@latest"],
"env": {
"CREDENTIALS_PATH": "/full/path/to/your/credentials.json",
"TOKEN_PATH": "/full/path/to/your/token.json"
}
}
}
}
```
*Note: A browser may open for Google login on first use. Ensure TOKEN_PATH is writable.*
**🍎 macOS Note:** If you get a `spawn uvx ENOENT` error, replace `"command": "uvx"` with `"command": "/Users/yourusername/.local/bin/uvx"` (replace `yourusername` with your actual username).
</details>
<details>
<summary>🔵 Config: uvx + CREDENTIALS_CONFIG (Service Account Example)</summary>
```json
{
"mcpServers": {
"google-sheets": {
"command": "uvx",
"args": ["mcp-google-sheets@latest"],
"env": {
"CREDENTIALS_CONFIG": "ewogICJ0eXBlIjogInNlcnZpY2VfYWNjb3VudCIsCiAgInByb2plY3RfaWQiOiAi...",
"DRIVE_FOLDER_ID": "your_shared_folder_id_here"
}
}
}
}
```
*Note: Paste the full Base64 string for CREDENTIALS_CONFIG. DRIVE_FOLDER_ID is still needed for Service Account folder context.*
**🍎 macOS Note:** If you get a `spawn uvx ENOENT` error, replace `"command": "uvx"` with `"command": "/Users/yourusername/.local/bin/uvx"` (replace `yourusername` with your actual username).
</details>
<details>
<summary>🔵 Config: uvx + Application Default Credentials (ADC)</summary>
**Option 1: With GOOGLE_APPLICATION_CREDENTIALS**
```json
{
"mcpServers": {
"google-sheets": {
"command": "uvx",
"args": ["mcp-google-sheets@latest"],
"env": {
"GOOGLE_APPLICATION_CREDENTIALS": "/path/to/service-account.json"
}
}
}
}
```
**Option 2: With gcloud auth (no env vars needed)**
```json
{
"mcpServers": {
"google-sheets": {
"command": "uvx",
"args": ["mcp-google-sheets@latest"],
"env": {}
}
}
}
```
*Prerequisites:*
1. *Run `gcloud auth application-default login --scopes=https://www.googleapis.com/auth/cloud-platform,https://www.googleapis.com/auth/spreadsheets,https://www.googleapis.com/auth/drive` first.*
2. *Set quota project: `gcloud auth application-default set-quota-project <project_id>`*
**🍎 macOS Note:** If you get a `spawn uvx ENOENT` error, replace `"command": "uvx"` with `"command": "/Users/yourusername/.local/bin/uvx"` (replace `yourusername` with your actual username).
</details>
<details>
<summary>🟡 Config: Development (Running from cloned repo)</summary>
```json
{
"mcpServers": {
"mcp-google-sheets-local": {
"command": "uv",
"args": [
"run",
"--directory",
"/path/to/your/mcp-google-sheets",
"mcp-google-sheets"
],
"env": {
"SERVICE_ACCOUNT_PATH": "/path/to/your/mcp-google-sheets/service_account.json",
"DRIVE_FOLDER_ID": "your_drive_folder_id_here"
}
}
}
}
```
*Note: Use `--directory` flag to specify the project path, and adjust paths to match your actual workspace location.*
</details>
---
## 💬 Example Prompts for Claude
Once connected, try prompts like:
* "List all spreadsheets I have access to." (or "in my AI Managed Sheets folder")
* "Create a new spreadsheet titled 'Quarterly Sales Report Q3 2024'."
* "In the 'Quarterly Sales Report' spreadsheet, get the data from Sheet1 range A1 to E10."
* "Add a new sheet named 'Summary' to the spreadsheet with ID `1aBcDeFgHiJkLmNoPqRsTuVwXyZ`."
* "In my 'Project Tasks' spreadsheet, Sheet 'Tasks', update cell B2 to 'In Progress'."
* "Append these rows to the 'Log' sheet in spreadsheet `XYZ`: `[['2024-07-31', 'Task A Completed'], ['2024-08-01', 'Task B Started']]`"
* "Get a summary of the spreadsheets 'Sales Data' and 'Inventory Count'."
* "Share the 'Team Vacation Schedule' spreadsheet with `team@example.com` as a reader and `manager@example.com` as a writer. Don't send notifications."
---
## 🤝 Contributing
Contributions are welcome! Please open an issue to discuss bugs or feature requests. Pull requests are appreciated.
---
## 📄 License
This project is licensed under the MIT License - see the [LICENSE](LICENSE) file for details.
---
## 🙏 Credits
* Built with [FastMCP](https://github.com/cognitiveapis/fastmcp).
* Inspired by [kazz187/mcp-google-spreadsheet](https://github.com/kazz187/mcp-google-spreadsheet).
* Uses Google API Python Client libraries.
You Might Also Like
UI-TARS-desktop
UI-TARS-desktop is part of the TARS Multimodal AI Agent stack.
inbox-zero
Inbox Zero is an open source AI email assistant to help manage your inbox...
bytebot
Bytebot: An open-source AI desktop agent that automates tasks for you.
DesktopCommanderMCP
DesktopCommanderMCP: AI-powered file management and terminal command execution.

ClaudeComputerCommander
This is an MCP server that provides terminal control, file system search,...
magic
Magic is an open-source AI productivity platform for all-in-one solutions.