Content
<div align="center">
<div>
<a href="https://strandsagents.com">
<img src="https://strandsagents.com/latest/assets/logo-github.svg" alt="Strands Agents" width="55px" height="105px">
</a>
</div>
<h1>
Strands Agent Builder
</h1>
<h2>
A model-driven approach to building AI agents in just a few lines of code.
</h2>
<div align="center">
<a href="https://github.com/strands-agents/agent-builder/graphs/commit-activity"><img alt="GitHub commit activity" src="https://img.shields.io/github/commit-activity/m/strands-agents/agent-builder"/></a>
<a href="https://github.com/strands-agents/agent-builder/issues"><img alt="GitHub open issues" src="https://img.shields.io/github/issues/strands-agents/agent-builder"/></a>
<a href="https://github.com/strands-agents/agent-builder/pulls"><img alt="GitHub open pull requests" src="https://img.shields.io/github/issues-pr/strands-agents/agent-builder"/></a>
<a href="https://github.com/strands-agents/agent-builder/blob/main/LICENSE"><img alt="License" src="https://img.shields.io/github/license/strands-agents/agent-builder"/></a>
<a href="https://pypi.org/project/strands-agents-builder/"><img alt="PyPI version" src="https://img.shields.io/pypi/v/strands-agents-builder"/></a>
<a href="https://python.org"><img alt="Python versions" src="https://img.shields.io/pypi/pyversions/strands-agents-builder"/></a>
</div>
<p>
<a href="https://strandsagents.com/">Documentation</a>
◆ <a href="https://github.com/strands-agents/samples">Samples</a>
◆ <a href="https://github.com/strands-agents/sdk-python">Python SDK</a>
◆ <a href="https://github.com/strands-agents/tools">Tools</a>
◆ <a href="https://github.com/strands-agents/agent-builder">Agent Builder</a>
◆ <a href="https://github.com/strands-agents/mcp-server">MCP Server</a>
</p>
</div>
An interactive Strands agent toolkit designed to help you build, test, and extend your own custom AI agents and tools. With the Strands Agent Builder, you can create specialized agents, develop custom tools, and compose complex AI workflows—all from your terminal.
## Quick Start
```bash
# Install
pipx install strands-agents-builder
# Run interactive mode for agent development
strands
# Build a custom tool and use it immediately
strands "Create a tool named sentiment_analyzer that analyzes text sentiment and test it with some examples"
# Pipe content to build an agent based on specifications
cat agent-spec.txt | strands "Build a specialized agent based on these specifications"
# Use with knowledge base to extend existing tools
strands --kb YOUR_KB_ID "Load my previous calculator tool and enhance it with scientific functions"
```
## Features
- 🏗️ Create and test custom tools with instant hot-reloading
- 🤖 Build specialized agents with focused capabilities
- 🔄 Extend existing tools and enhance their functionality
- 💬 Interactive command-line interface with rich output
- 🛠️ Powerful integrated tools (12+ tools including shell, editor, HTTP, Python)
- 🧠 Knowledge base integration for persisting and loading tools
- 🎮 Customizable system prompt for specialized agents
- 🪄 Nested agent capabilities with tool delegation
- 🔧 Dynamic tool loading for extending functionality
- 🖥️ Environment variable management and customization
## Integrated Tools
Strands comes with a comprehensive set of built-in tools:
- **agent_graph**: Create and manage graphs of agents
- **calculator**: Perform mathematical operations
- **cron**: Task scheduling with cron jobs *(not available on Windows)*
- **current_time**: Get the current date and time
- **editor**: File editing operations like line edits, search, and undo
- **environment**: Manage environment variables
- **generate_image**: Create AI generated images with Amazon Bedrock
- **http_request**: Make API calls, fetch web data, and call local HTTP servers
- **image_reader**: Process and analyze images
- **journal**: Create structured tasks and logs for agents to manage and work from
- **load_tool**: Dynamically load more tools at runtime
- **memory**: Agent memory persistence in Amazon Bedrock Knowledge Bases
- **nova_reels**: Create AI generated videos with Nova Reels on Amazon Bedrock
- **python_repl**: Run Python code *(not available on Windows)*
- **retrieve**: Semantically retrieve data from Amazon Bedrock Knowledge Bases for RAG, memory, and other purposes
- **shell**: Execute shell commands *(not available on Windows)*
- **slack**: Slack integration with real-time events, API access, and message sending
- **speak**: Generate speech from text using macOS say command or Amazon Polly
- **stop**: Force stop the agent event loop
- **store_in_kb**: Save content to knowledge bases for future reference
- **strand**: Create nested agent instances with specialized capabilities
- **swarm**: Coordinate multiple AI agents in a swarm / network of agents
- **think**: Perform deep thinking by creating parallel branches of agentic reasoning
- **use_aws**: Interact with AWS services
- **use_llm**: Run a new AI event loop with custom prompts
- **welcome**: Manage the Strands Agent Builder welcome text
- **workflow**: Orchestrate sequenced workflows
## Knowledge Base Integration
Strands Agent Builder leverages Amazon Bedrock Knowledge Bases to store and retrieve custom tools, agent configurations, and development history.
### Set up your Knowledge Base
#### Prerequisites
- AWS account with IAM user
- Access to Amazon Bedrock console
- Permissions to create IAM roles and S3 buckets
#### Console Setup (Recommended)
1. **Access Amazon Bedrock Console**
- Sign in to [AWS Management Console](https://console.aws.amazon.com/bedrock)
- Navigate to **Knowledge bases** in the left panel
2. **Create Knowledge Base**
- Click **Create** → **Knowledge base with vector store**
- Enter a name and description for your knowledge base
3. **Configure IAM Role**
- Choose **Create and use a new service role** (recommended)
- Or select an existing role with Bedrock permissions
4. **Set Up Data Source**
- Choose your data source type, select `Custom` for Strands Agent
- Configure connection details
5. **Configure Embeddings**
- Select an embeddings model (e.g., Amazon Titan Text Embeddings V2)
- Choose embedding type: `float32` (precise) or `binary` (cost-effective)
6. **Choose Vector Store**
- **Quick create** (recommended): Let Bedrock create and manage the vector store
- **Custom**: Use existing OpenSearch Serverless, Aurora PostgreSQL, or S3 Vectors
7. **Review and Create**
- Review all configurations
- Click **Create knowledge base**
- Wait for creation to complete (status: "Ready" or "Available")
8. **Sync Data Source**
- Select your knowledge base
- Click **Sync** in the data source section
- Wait for initial sync to complete
#### API Setup (Advanced)
Create via AWS CLI or SDK:
```bash
# Example using AWS CLI
aws bedrock-agent create-knowledge-base \
--name "MyKnowledgeBase" \
--description "Strands Agent Builder KB" \
--role-arn "arn:aws:iam::ACCOUNT:role/AmazonBedrockExecutionRoleForKnowledgeBase" \
--knowledge-base-configuration '{
"type": "VECTOR",
"vectorKnowledgeBaseConfiguration": {
"embeddingModelArn": "arn:aws:bedrock:us-east-1::foundation-model/amazon.titan-embed-text-v2:0"
}
}' \
--storage-configuration '{
"type": "OPENSEARCH_SERVERLESS",
"opensearchServerlessConfiguration": {
"collectionArn": "arn:aws:aoss:us-east-1:ACCOUNT:collection/YOUR_COLLECTION",
"vectorIndexName": "bedrock-knowledge-base-index",
"fieldMapping": {
"vectorField": "bedrock-knowledge-base-default-vector",
"textField": "AMAZON_BEDROCK_TEXT_CHUNK",
"metadataField": "AMAZON_BEDROCK_METADATA"
}
}
}'
```
For more set up details, please see [AWS Bedrock Knowledgebase](https://docs.aws.amazon.com/bedrock/latest/userguide/knowledge-base-create.html)
#### Get Your Knowledge Base ID
After creation, find your Knowledge Base ID:
- **Console**: Copy from the knowledge base details page
- **CLI**: `aws bedrock-agent list-knowledge-bases`
The ID format: `ABCDEFGHIJ` (10 characters)
### Use your KnowledgeBase
```bash
# Load and extend tools from your knowledge base
strands --kb YOUR_KB_ID "Load my data_visualizer tool and add 3D plotting capabilities"
# Or set a default knowledge base via environment variable
export STRANDS_KNOWLEDGE_BASE_ID="YOUR_KB_ID"
strands "Find my most recent agent configuration and make it more efficient"
```
Features:
- 🔄 Retrieve previously created tools and agent configurations
- 💾 Persistent storage for your custom tools and agents
- 🛠️ Ability to iteratively improve tools across sessions
- 🔍 Find and extend tools built in previous sessions
## Model Configuration
### Optimized Defaults
Strands comes with optimized, maxed-out configuration settings for the Bedrock model provider:
```json
{
"model_id": "us.anthropic.claude-sonnet-4-20250514-v1:0",
"max_tokens": 32767,
"boto_client_config": {
"read_timeout": 900,
"connect_timeout": 900,
"retries": {
"max_attempts": 3,
"mode": "adaptive"
}
},
"additional_request_fields": {
"anthropic_beta": ["interleaved-thinking-2025-05-14"],
"thinking": {
"type": "enabled",
"budget_tokens": 2048
}
}
}
```
These settings provide:
- Claude Sonnet 4 (latest high-performance model)
- Maximum token output (32,768 tokens)
- Extended timeouts (15 minutes) for complex operations
- Automatic retries with adaptive backoff
- Interleaved thinking capability for real-time reasoning during responses
- Enabled thinking capability with 2,048 token budget for recursive reasoning
You can customize these values using environment variables:
```bash
# Maximum tokens for responses
export STRANDS_MAX_TOKENS=32000
# Budget for agent thinking/reasoning
export STRANDS_BUDGET_TOKENS=1024
```
## Custom Model Provider
You can configure strands to use a different model provider with specific settings by passing in the following arguments:
```bash
strands --model-provider <NAME> --model-config <JSON|FILE>
```
As an example, if you wanted to use the packaged Ollama provider with a specific model id, you would run:
```bash
strands --model-provider ollama --model-config '{"model_id": <ID>}'
```
Strands Agent Builder is packaged with `bedrock` and `ollama`.
If you have implemented a custom model provider ([instructions](https://strandsagents.com/latest/user-guide/concepts/model-providers/custom_model_provider/)) and would like to use it with strands, create a python module under the directory "$CWD/.models" and expose an `instance` function that returns an instance of your provider. As an example, assume you have:
```bash
$ cat ./.models/custom_model.py
from mymodels import CustomModel
def instance(**config):
return CustomModel(**config)
```
You can then use it with strands by running:
```bash
$ strands --model-provider custom_model --model-config <JSON|FILE>
```
## Custom System Prompts
```bash
# Via environment variable
export STRANDS_SYSTEM_PROMPT="You are a Python expert."
# Or local file
echo "You are a security expert." > .prompt
```
## 🌍 Environment Variables Configuration
Strands Agent Builder also provides customization through environment variables:
| Environment Variable | Description | Default |
|----------------------|-------------|---------|
| STRANDS_MODEL_ID | Claude model ID to use for inference | us.anthropic.claude-sonnet-4-20250514-v1:0 |
| STRANDS_MAX_TOKENS | Maximum tokens for agent responses | 32768 |
| STRANDS_BUDGET_TOKENS | Token budget for agent thinking/reasoning | 2048 |
| STRANDS_THINKING_TYPE | Type of thinking capability | enabled |
| STRANDS_ANTHROPIC_BETA | Anthropic beta features (comma-separated) | interleaved-thinking-2025-05-14 |
| STRANDS_CACHE_TOOLS | Tool caching strategy | default |
| STRANDS_CACHE_PROMPT | Prompt caching strategy | default |
| STRANDS_SYSTEM_PROMPT | Custom system prompt (overrides .prompt file) | None |
| STRANDS_KNOWLEDGE_BASE_ID | Default Knowledge Base ID | None |
| STRANDS_TOOL_CONSOLE_MODE | Enable rich console UI | enabled |
| BYPASS_TOOL_CONSENT | Skip tool confirmation prompts | false |
## Exit
Type `exit`, `quit`, or press `Ctrl+C`/`Ctrl+D`
## Contributing ❤️
We welcome contributions! See our [Contributing Guide](CONTRIBUTING.md) for details on:
- Reporting bugs & features
- Development setup
- Contributing via Pull Requests
- Code of Conduct
- Reporting of security issues
## License
This project is licensed under the Apache License 2.0 - see the [LICENSE](LICENSE) file for details.
## Security
See [CONTRIBUTING](CONTRIBUTING.md#security-issue-notifications) for more information.
Connection Info
You Might Also Like
MarkItDown MCP
Converting files and office documents to Markdown.
Time
Obtaining current time information and converting time between different...
Filesystem
Model Context Protocol Servers
Sequential Thinking
Offers a structured approach to dynamic and reflective problem-solving,...
Git
Model Context Protocol Servers
Context 7
Context7 MCP Server -- Up-to-date code documentation for LLMs and AI code editors