Content
# Awesome AI Resources
A comprehensive collection of free resources to learn everything about AI, LLMs and AI Agents.
## Mathematical Foundations
- [Essence of Linear Algebra - 3Blue1Brown](https://www.youtube.com/playlist?list=PLZHQObOWTQDPD3MizzM2xVFitgF8hE_ab)
- [Probability & Statistics - Khan Academy](https://www.khanacademy.org/math/statistics-probability)
- [Statistics Fundamentals - Josh Strarmer](https://www.youtube.com/playlist?list=PLblh5JKOoLUK0FLuzwntyYI10UQFUhsY9)
- [Mathematics for Machine Learning Specialization - Coursera (Andrew Ng)](https://www.coursera.org/specializations/mathematics-machine-learning)
## AI & ML Fundamentals
- [Machine Learning Crash Course - Google](https://developers.google.com/machine-learning/crash-course)
- [AI for Beginners – Microsoft](https://microsoft.github.io/AI-For-Beginners/)
- [Elements of AI – University of Helsinki](https://course.elementsofai.com/)
- [Machine Learning Playlist - Josh Strarmer](https://www.youtube.com/playlist?list=PLblh5JKOoLUICTaGLRoHQDuF_7q2GfuJF)
- [Machine Learning Specialization - Coursera](https://www.coursera.org/specializations/machine-learning-introduction)
### Machine Learning Frameworks
- [Scikit-learn](https://scikit-learn.org/stable/)
- [XGBoost](https://xgboost.ai/)
- [LightGBM](https://lightgbm.readthedocs.io/en/stable/)
- [CatBoost](https://catboost.ai/)
## Deep Learning
- [Deep Learning Specialization - Coursera (Andrew Ng)](https://www.coursera.org/specializations/deep-learning)
- [Practical Deep Learning for Coders - Fast.ai](https://course.fast.ai/)
- [Mathematics for Deep Learning](https://d2l.ai/chapter_appendix-mathematics-for-deep-learning/)
- [Deep Learning Playlist - Josh Starmer](https://www.youtube.com/playlist?list=PLblh5JKOoLUIxGDQs4LFFD--41Vzf-ME1)
### Deep Learning Frameworks
- [TensorFlow](https://www.tensorflow.org/)
- [PyTorch](https://pytorch.org/)
- [Keras](https://keras.io/)
## Generative AI
- [The Building Blocks of Generative AI](https://shriftman.substack.com/p/the-building-blocks-of-generative)
- [Generative AI for Beginners - Microsoft](https://github.com/microsoft/generative-ai-for-beginners)
- [Generative AI for Everyone - Coursera](https://www.coursera.org/learn/generative-ai-for-everyone)
## Large Language Models (LLMs)
- [Large Language Models explained briefly](https://www.youtube.com/watch?v=LPZh9BOjkQs)
- [Intro to LLMs](https://www.youtube.com/watch?v=zjkBMFhNj_g&pp=ygUDbGxt)
- [Understanding Large Language Models](https://magazine.sebastianraschka.com/p/understanding-large-language-models)
- [A Visual Guide to Reasoning LLMs](https://newsletter.maartengrootendorst.com/p/a-visual-guide-to-reasoning-llms)
- [Understanding Reasoning LLMs](https://magazine.sebastianraschka.com/p/understanding-reasoning-llms)
- [Understanding Multimodal LLMs](https://magazine.sebastianraschka.com/p/understanding-multimodal-llms)
- [A Visual Guide to Mixture of Experts (MoE)](https://newsletter.maartengrootendorst.com/p/a-visual-guide-to-mixture-of-experts)
- [Finetuning Large Language Models](https://magazine.sebastianraschka.com/p/finetuning-large-language-models)
- [How Transformer LLMs Work](https://www.deeplearning.ai/short-courses/how-transformer-llms-work/)
- [LLM Course - GitHub](https://github.com/mlabonne/llm-course)
- [Awesome LLM Apps - GitHub](https://github.com/Shubhamsaboo/awesome-llm-apps)
### LLM Frameworks
- [LangChain](https://www.langchain.com/)
- [LlamaIndex](https://www.llamaindex.ai/)
## Prompt Engineering
- [Google Prompting Essentials](https://www.coursera.org/google-learn/prompting-essentials)
- [ChatGPT Prompt Engineering for Developers - Deeplearning.ai](https://www.deeplearning.ai/short-courses/chatgpt-prompt-engineering-for-developers/)
- [Advanced Prompting Techniques - Instructor](https://python.useinstructor.com/prompting/)
- [Prompt Engineering Techniques - Github](https://github.com/NirDiamant/Prompt_Engineering)
- [Getting Structured LLM Output - Deeplearning.ai](https://www.deeplearning.ai/short-courses/getting-structured-llm-output/)
## Retrieval-Augmented Generation (RAG)
- [Introduction to RAG - Coursera](https://www.coursera.org/projects/introduction-to-rag)
- [RAG Techniques - Github](https://github.com/NirDiamant/RAG_Techniques)
## AI Agents
- [A Visual Guide to LLM Agents](https://newsletter.maartengrootendorst.com/p/a-visual-guide-to-llm-agents)
- [AI Agents Course - Hugging Face](https://huggingface.co/learn/agents-course/)
- [Building AI Browser Agents - Deeplearning.ai](https://www.deeplearning.ai/short-courses/building-ai-browser-agents/)
- [GenAI Agents - Github](https://github.com/NirDiamant/GenAI_Agents)
## Model Context Protocol (MCP)
- [MCP - Anthropic Guide](https://modelcontextprotocol.io/introduction)
- [Awesome MCP Servers - Github](https://github.com/punkpeye/awesome-mcp-servers)
## Tools
### Chatbots
- [ChatGPT](https://chatgpt.com/)
- [Claude](https://claude.ai/new)
- [Perplexity](https://www.perplexity.ai/)
### AI IDEs
- [Cursor](https://www.cursor.com/)
- [Windsurf](https://windsurf.com/editor)
## Experiment & Deployment
- [Streamlit](https://streamlit.io/)
- [MLflow](https://mlflow.org/)
## Books
- [Hands-On Machine Learning](https://www.oreilly.com/library/view/hands-on-machine-learning/9781492032632/)
- [Deep Learning - Ian Goodfellow](https://www.deeplearningbook.org/)
- [Deep Learning with Python](https://www.amazon.in/Deep-Learning-Python-Francois-Chollet/dp/1617294438/)
- [Why Machines Learn](https://www.amazon.com/Why-Machines-Learn-Elegant-Behind/dp/0593185749)
- [Designing Machine Learning Systems](https://www.oreilly.com/library/view/designing-machine-learning/9781098107956/)
- [AI Engineering](https://www.oreilly.com/library/view/ai-engineering/9781098166298/)
- [Build a LLM from Scratch](https://www.manning.com/books/build-a-large-language-model-from-scratch)
- [Prompt Engineering for LLMs](https://www.oreilly.com/library/view/prompt-engineering-for/9781098156145/)
## YouTube Channels
- [Andrej Karpathy](https://www.youtube.com/@AndrejKarpathy)
- [3Blue1Brown](https://www.youtube.com/@3blue1brown)
## Must-Read AI Papers
- [Attention Is All You Need](https://arxiv.org/pdf/1706.03762)
- [Generative Adversarial Networks (GANs)](https://arxiv.org/abs/1406.2661)
- [GPT: Improving Language Understanding by Generative Pre-Training](https://cdn.openai.com/research-covers/language-unsupervised/language_understanding_paper.pdf)
- [GPT-3: Language Models are Few-Shot Learners](https://arxiv.org/abs/2005.14165)
- [BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding](https://arxiv.org/abs/1810.04805)
- [Chain-of-Thought Prompting Elicits Reasoning in LLMs](https://arxiv.org/abs/2201.11903)