Content
<h1 align="center">Symfony MCP Server</h1>
<p align="center">
A powerful Symfony package to build a Model Context Protocol Server seamlessly and
<strong>build Intelligent AI Agents.</strong><br>
Transform your Symfony applications into powerful AI-driven systems
</p>
<p align="center">
<a href="https://github.com/klapaudius/symfony-mcp-server/actions"><img src="https://github.com/klapaudius/symfony-mcp-server/actions/workflows/tests.yml/badge.svg" alt="Build Status"></a>
<a href="https://codecov.io/gh/klapaudius/symfony-mcp-server" > <img src="https://codecov.io/gh/klapaudius/symfony-mcp-server/graph/badge.svg?token=5FXOJVXPZ1" alt="Coverage"/></a>
<a href="https://packagist.org/packages/klapaudius/symfony-mcp-server"><img src="https://img.shields.io/packagist/l/klapaudius/symfony-mcp-server" alt="License"></a>
<a href="https://packagist.org/packages/klapaudius/symfony-mcp-server"><img src="https://img.shields.io/packagist/v/klapaudius/symfony-mcp-server" alt="Latest Stable Version"></a>
<a href="https://packagist.org/packages/klapaudius/symfony-mcp-server"><img src="https://img.shields.io/packagist/dt/klapaudius/symfony-mcp-server" alt="Total Downloads"></a>
</p>
## 🤖 Unleash the Power of AI Agents in Your Symfony Apps
Symfony MCP Server enables you to build **intelligent, context-aware AI agents** that can reason, make decisions, and interact with your application's business logic. By implementing the Model Context Protocol (MCP), your Symfony application becomes a platform for sophisticated AI-driven automation and intelligence.
### 🎯 Why Build Agents with Symfony MCP Server?
**Transform Static Tools into Intelligent Agents:**
- 🧠 **AI-Powered Reasoning**: Tools can consult LLMs mid-execution to make smart decisions
- 🔄 **Dynamic Adaptation**: Agents adapt their behavior based on context and real-time analysis
- 💡 **Complex Problem Solving**: Break down complex tasks and solve them iteratively with AI assistance
- 🎨 **Creative Generation**: Generate content and solutions that evolve with user needs
**Enterprise-Grade Security:**
- 🔒 **Secure Transports**: StreamableHTTP and SSE instead of STDIO for production environments
- 🛡️ **Protected APIs**: Keep your internal systems safe while exposing AI capabilities
- 🎛️ **Fine-Grained Control**: Manage authentication, authorization, and access at every level
**Key Features:**
- 🛠️ **Tools**: Create powerful, executable functions that LLM can invoke to interact with your application
- 💬 **Prompts**: Define conversation starters and templates to guide AI behavior and interactions
- 📚 **Resources**: Expose structured data and documents that AI can read and reason about
- 🧠 **Sampling**: Enable tools to consult AI models mid-execution for intelligent decision-making
- 📊 **Progress Streaming**: Real-time progress notifications for long-running operations
- 🎨 **Multi-Modal Results**: Support for Text, Image, Audio, and Resource outputs from tools
- 🔌 **Flexible Architecture**: Adapter-based design with Pub/Sub messaging for scalable deployments
## 🚀 Agent-First Features
### 🧪 Sampling: The Core of Agentic Behavior (v1.4.0+)
Transform your tools into autonomous agents that can think and reason:
```php
class IntelligentAnalyzer implements SamplingAwareToolInterface
{
private SamplingClient $samplingClient;
public function execute(array $arguments): ToolResultInterface
{
// Check if sampling is available
if ($this->samplingClient !== null && $this->samplingClient->isEnabled()) {
try {
// Let AI analyze and reason about complex data
$response = $this->samplingClient->createTextRequest(
"Analyze this data and suggest optimizations: {$arguments['data']}",
new ModelPreferences(
[['name' => 'claude-3-sonnet']],
0.3, // costPriority
0.8, // intelligencePriority
0.2 // speedPriority
),
'You are a data analysis expert.',
2000
);
// Execute actions based on AI reasoning
return new TextToolResult($response->getContent()->getText());
} catch (\Exception $e) {
// Fallback to basic analysis
return new TextToolResult('Basic analysis: Data structure appears valid.');
}
}
return new TextToolResult('Advanced analysis requires AI capabilities.');
}
public function setSamplingClient(SamplingClient $samplingClient): void
{
$this->samplingClient = $samplingClient;
}
}
```
### 🛠️ Tool System: Building Blocks for Agents
Create powerful tools that AI agents can orchestrate:
- **StreamableToolInterface**: Real-time progress updates for long-running operations
- **Multi-Result Support**: Return text, images, audio, or resources
- **Progress Notifications**: Keep users informed during complex agent operations
- **Dynamic Tool Discovery**: Agents can discover and use tools based on capabilities
### 🎭 Prompt Engineering for Agent Behavior
Define agent personalities and behaviors through sophisticated prompt systems:
- **Context-Aware Prompts**: Guide agent behavior based on application state
- **Multi-Modal Support**: Text, image, audio, and resource-based prompts
- **Dynamic Prompt Generation**: Prompts that adapt based on user interaction
### 📚 Resource Management for Agent Memory
Give your agents access to structured knowledge:
- **Dynamic Resource Loading**: Agents can access and reason about your data
- **Template-Based Resources**: Generate resources on-the-fly based on context
- **Multi-Provider Support**: File system, database, API, or custom providers
## 🎯 Real-World Agent Examples
### 🔍 Intelligent Code Review Agent
```php
class CodeReviewAgent implements SamplingAwareToolInterface
{
private SamplingClient $samplingClient;
public function execute(array $arguments): ToolResultInterface
{
// Check if sampling is available
if ($this->samplingClient !== null && $this->samplingClient->isEnabled()) {
try {
// AI analyzes code for patterns, security, and best practices
$review = $this->samplingClient->createTextRequest(
"Review this code for security vulnerabilities, performance issues, and suggest improvements: {$arguments['code']}",
new ModelPreferences(
[['name' => 'claude-3-sonnet']],
0.2, // costPriority
0.8, // intelligencePriority
0.2 // speedPriority
),
'You are a senior code reviewer with expertise in security and performance.',
2000
);
// Generate actionable recommendations
return new TextToolResult($this->formatReview($review->getContent()->getText()));
} catch (\Exception $e) {
// Fallback to basic analysis
return new TextToolResult('Basic code review: Structure appears valid.');
}
}
return new TextToolResult('Advanced code review requires AI capabilities.');
}
public function setSamplingClient(SamplingClient $samplingClient): void
{
$this->samplingClient = $samplingClient;
}
}
```
### 📊 Data Analysis Agent
```php
class DataInsightAgent implements SamplingAwareToolInterface, StreamableToolInterface
{
private SamplingClient $samplingClient;
private ?ProgressNotifierInterface $progressNotifier = null;
public function execute(array $arguments): ToolResultInterface
{
// Check if sampling is available
if ($this->samplingClient !== null && $this->samplingClient->isEnabled()) {
try {
// Multi-step reasoning process
$steps = [
'Identify patterns and anomalies',
'Generate statistical insights',
'Create visualizations',
'Recommend actions'
];
$this->progressNotifier?->sendProgress(
progress: 0,
total: count($steps)+1,
message: "Analyzing dataset..."
);
$insights = [];
foreach ($steps as $i => $step) {
$response = $this->samplingClient->createTextRequest(
"$step for this data: {$arguments['data']}",
new ModelPreferences(
[['name' => 'claude-3-sonnet']],
0.2, // costPriority
0.8, // intelligencePriority
0.2 // speedPriority
),
'You are a data analysis expert.',
2000
);
$insights[] = $response->getContent()->getText();
$this->progressNotifier?->sendProgress(
progress: $i+1,
total: count($steps)+1,
message: $step
);
}
return new TextToolResult($this->compileReport($insights));
} catch (\Exception $e) {
return new TextToolResult('Basic data analysis: Dataset appears well-formed.');
}
}
return new TextToolResult('Advanced data analysis requires AI capabilities.');
}
public function setSamplingClient(SamplingClient $samplingClient): void
{
$this->samplingClient = $samplingClient;
}
public function setProgressNotifier(ProgressNotifierInterface $progressNotifier): void
{
$this->progressNotifier = $progressNotifier;
}
}
```
### 🤝 Customer Support Agent
```php
class SupportAgent implements SamplingAwareToolInterface
{
private SamplingClient $samplingClient;
public function execute(array $arguments): ToolResultInterface
{
// Check if sampling is available
if ($this->samplingClient !== null && $this->samplingClient->isEnabled()) {
try {
// Load customer context
$context = $this->loadCustomerHistory($arguments['customer_id']);
// AI determines best response strategy
$response = $this->samplingClient->createTextRequest(
"Customer issue: {$arguments['issue']}\nHistory: $context\nDetermine the best resolution approach.",
new ModelPreferences(
[['name' => 'claude-3-sonnet']],
0.2, // costPriority
0.8, // intelligencePriority
0.2 // speedPriority
),
'You are an expert customer support agent.',
2000
);
// Send back the strategy for user approval
return new TextToolResult($response->getContent()->getText());
} catch (\Exception $e) {
return new TextToolResult('Standard support response: We will review your issue and respond within 24 hours.');
}
}
return new TextToolResult('Personalized support requires AI capabilities.');
}
public function setSamplingClient(SamplingClient $samplingClient): void
{
$this->samplingClient = $samplingClient;
}
}
```
## 🚀 Quick Start: Build Your First Agent
### 1. Requirements
- PHP >=8.2
- Symfony >=6.4
### 2. Install Symfony MCP Server
#### Create the configuration file config/packages/klp_mcp_server.yaml and paste into it:
```yaml
klp_mcp_server:
enabled: true
server:
name: 'My MCP Server'
version: '1.0.0'
default_path: 'mcp'
ping:
enabled: true # Read the warning section in the default configuration file before disable it
interval: 30
server_providers: ['streamable_http','sse']
sse_adapter: 'cache'
adapters:
cache:
prefix: 'mcp_sse_'
ttl: 100
tools:
- KLP\KlpMcpServer\Services\ToolService\Examples\CodeAnalyzerTool # Agentic tool sample
- KLP\KlpMcpServer\Services\ToolService\Examples\HelloWorldTool
- KLP\KlpMcpServer\Services\ToolService\Examples\ProfileGeneratorTool
- KLP\KlpMcpServer\Services\ToolService\Examples\StreamingDataTool
- KLP\KlpMcpServer\Services\ToolService\Examples\VersionCheckTool
prompts:
- KLP\KlpMcpServer\Services\PromptService\Examples\CodeReviewPrompt # Agentic prompt sample
- KLP\KlpMcpServer\Services\PromptService\Examples\HelloWorldPrompt
resources:
- KLP\KlpMcpServer\Services\ResourceService\Examples\HelloWorldResource
- KLP\KlpMcpServer\Services\ResourceService\Examples\ProjectSummaryResource # Agentic resource sample
resources_templates:
- KLP\KlpMcpServer\Services\ResourceService\Examples\DynamicAnalysisResource # Agentic resource template sample
- KLP\KlpMcpServer\Services\ResourceService\Examples\McpDocumentationResource
```
For more detailed explanations, you can open the default configuration file
[from that link.](src/Resources/config/packages/klp_mcp_server.yaml)
#### Install the package via Composer:
```bash
composer require klapaudius/symfony-mcp-server
```
#### Add routes in your `config/routes.yaml`
```yaml
klp_mcp_server:
resource: '@KlpMcpServerBundle/Resources/config/routes.php'
type: php
```
**You're all done!** Upon completing this setup, your project will include 3 new API endpoints:
- **Streaming Endpoint for MCP Clients**: `GET /{default_path}/sse`
- **Request Submission Endpoint**: `POST /{default_path}/messages`
- **Streamable HTTP Endpoint**: `GET|POST /{default_path}`
### Docker Setup (Optional)
The project includes a Docker setup that can be used for development. The Docker setup includes Nginx, PHP-FPM with Redis extension, and Redis server.
For detailed instructions on how to set up and use the Docker containers, please refer to the [Development Guidelines](CONTRIBUTING.md#docker-setup).
### 3. Create Your First Tool
```bash
# Generate a new tool
php bin/console make:mcp-tool MyCustomTool
# Test your tool locally
php bin/console mcp:test-tool MyCustomTool --input='{"task":"analyze this code"}'
```
### 4. Visualizing with Inspector
You can use the Model Context Protocol Inspector to visualize and test your MCP tools:
```bash
# Run the MCP Inspector without installation
npx @modelcontextprotocol/inspector node build/index.js
```
This will typically open a web interface at `localhost:6274`. To test your MCP server:
### 5. Connect AI Clients
Your agents are now accessible to:
- 🤖 Claude Desktop / Claude.ai
- 🧠 Custom AI applications
- 🔗 Any MCP-compatible client
## 🏗️ Architecture for Agent Builders
### Secure Agent Communication
- **StreamableHTTP**: Direct, secure agent-to-client communication
- **SSE (Server-Sent Events)**: Real-time updates for long-running agent tasks
- **No STDIO**: Enterprise-safe, no system exposure
### Scalable Agent Infrastructure
- **Pub/Sub Messaging**: Handle multiple agent sessions concurrently
- **Redis/Cache Adapters**: Scale your agent platform horizontally
- **Progress Streaming**: Real-time feedback for complex agent operations
### Agent Development Tools
- **MCP Inspector**: Visualize and debug agent behavior
- **Test Commands**: Rapid agent development and testing
### Current Available MCP Features
| Ressources | Prompts | Tools | Discovery | Sampling | Roots | Elicitation |
|:----------:|:-------:|:-----:|:---------:|:--------:|:-----:|:-----------:|
| ✅ | ✅ | ✅ | ❌ | ✅ | ❌ | ❌ |
## 🎓 Agent Development Resources
- 📖 **[Building Intelligent Tools](https://github.com/klapaudius/symfony-mcp-server/blob/master/docs/building_tools.md)**: Complete guide to creating AI-powered tools
- 🧠 **[Sampling Documentation](https://github.com/klapaudius/symfony-mcp-server/blob/master/docs/sampling.md)**: Master agent reasoning capabilities
- 🎭 **[Prompt Engineering](https://github.com/klapaudius/symfony-mcp-server/blob/master/docs/building_prompts.md)**: Design agent behaviors and personalities
- 📚 **[Resource Management](https://github.com/klapaudius/symfony-mcp-server/blob/master/docs/building_resources.md)**: Give agents access to knowledge
## 🌟 Join the Agent Revolution
Build the next generation of AI-powered applications with Symfony MCP Server. Your tools aren't just functions anymore – they're intelligent agents capable of reasoning, learning, and evolving.
### Community
- 💬 [GitHub Discussions](https://github.com/klapaudius/symfony-mcp-server/discussions): Share your agent creations
- 🐛 [Issue Tracker](https://github.com/klapaudius/symfony-mcp-server/issues): Report bugs and request features
- 🌟 [Examples](https://github.com/klapaudius/symfony-mcp-server/tree/master/src/Services/ToolService/Examples): Learn from working agents
## 📜 License
MIT License - Build freely!
## 📰 MCP Registries referencing
- https://mcpreview.com/mcp-servers/klapaudius/symfony-mcp-server
- https://mcp.so/server/symfony-mcp-server/klapaudius
---
*Built with ❤️ by [Boris AUBE](https://github.com/klapaudius) and the [contributors](https://github.com/klapaudius/symfony-mcp-server/contributors) - Inspired by [OP.GG/laravel-mcp-server](https://github.com/opgginc/laravel-mcp-server)*
You Might Also Like

n8n
n8n is a secure workflow automation platform for technical teams with 400+...

Dify
Dify is a platform for AI workflows, enabling file uploads and self-hosting.
semantic-kernel
Build and deploy intelligent AI agents with the Semantic Kernel framework.

apisix
Apache APISIX is an API Gateway for managing APIs and microservices.
opik
Opik is a powerful tool for managing and optimizing machine learning experiments.

MCP Toolbox for Databases
MCP Toolbox for Databases is an open-source server simplifying database tool...